The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats.
نویسندگان
چکیده
Activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels protects the brain against ischemic or chemical challenge. Unfortunately, the prototype mitoK(ATP) channel opener, diazoxide, has mitoK(ATP) channel-independent actions. We examined the effects of BMS-191095, a novel selective mitoK(ATP) channel opener, on transient ischemia induced by middle cerebral artery occlusion (MCAO) in rats. Male Wister rats were subjected to 90 mins of MCAO. BMS-191095 (25 microg; estimated brain concentration of 40 micromol/L) or vehicle was infused intraventricularly before the onset of ischemia. In addition, the effects of BMS-191095 on plasma and mitochondrial membrane potentials and reactive oxygen species (ROS) production in cultured neurons were examined. Finally, we determined the effects of BMS-191095 on cerebral blood flow (CBF) and potassium currents in cerebrovascular myocytes. Treatment with BMS-191095 24 h before the onset of ischemia reduced total infarct volume by 32% and cortical infarct volume by 38%. However, BMS-191095 administered 30 or 60 mins before MCAO had no effect. The protective effects of BMS-191095 were prevented by co-treatment with 5-hydroxydecanoate (5-HD), a mitoK(ATP) channel antagonist. In cultured neurons, BMS-191095 (40 micromol/L) depolarized the mitochondria without affecting ROS levels, and this effect was inhibited by 5-HD. BMS-191095, similar to the vehicle, caused an unexplained but modest reduction in the CBF. Importantly, BMS-191095 did not affect either the potassium currents in cerebrovascular myocytes or the plasma membrane potential of neurons. Thus, BMS-191095 afforded protection against cerebral ischemia by delayed preconditioning via selective opening of mitoK(ATP) channels and without ROS generation.
منابع مشابه
Neuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملPharmacologic profile of the selective mitochondrial-K(ATP) opener BMS-191095 for treatment of acute myocardial ischemia.
ATP-sensitive potassium channel (K(ATP)) openers as a class protect ischemic myocardium. The protective effects are independent of vasodilator activity and effects on action potential shortening, actions typically associated with sarcolemmal K(ATP) activation. BMS-191095 is a novel mitochondrial K(ATP) opener which protects ischemic myocardium while having no electrophysiologic or vasodilator e...
متن کاملIn vivo characterization of the mitochondrial selective K(ATP) opener (3R)-trans-4-((4-chlorophenyl)-N-(1H-imidazol-2-ylmethyl)dimethyl-2H-1-benzopyran-6-carbonitril monohydrochloride (BMS-191095): cardioprotective, hemodynamic, and electrophysiological effects.
Recent studies have shown the importance of mitochondrial ATP-sensitive potassium channels (K(ATP)) in cardioprotection, and studies in vitro have shown that the benzopyran analog (3R)-trans- 4-((4-chlorophenyl)-N-(1H-imidazol-2-ylmethyl)dimethyl-2H-1-benzopyran-6-carbonitril monohydrochloride (BMS-191095) is a selective mitochondrial K(ATP) opener with cardioprotective activity. The goal of th...
متن کاملPharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity.
Previous work described ATP-sensitive K(+) channel (K(ATP)) openers (e.g., BMS-180448), which retain the cardioprotective activity of agents such as cromakalim while being significantly less potent as vasodilators. In this study, we describe the pharmacologic profile of BMS-191095, which is devoid of peripheral vasodilating activity while retaining glyburide-reversible cardioprotective activity...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2007